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Ananda Weerasinghe∗

December 22, 2010

1 Statement of the Problem

In the first part of this project, we study several stochastic control problems driven by one-
dimensional fractional Brownian motion(fBM) process. Such processes are non-Markovian
and their future behavior may depend on the history. These models arise in many practical
situations and our work is motivated by approximating large on-off queueing networks by
fBM driven stochastic systems. We address several stochastic optimal control problems for
fBM driven models. We obtain existence theorems for optimal strategies. In the case of long-
run average cost optimization problems, due to highly non-Markovian nature of the fBM, it
is not apriori known whether the initial data plays a role in the overall cost and hence for
the choice of an optimal strategy. We answer this problem by showing that the long-run
cost is independent of the initial data and the tool we developed here to obtain this result is
a coupling time argument and it may have other applications. Stochastic control of models
driven by fBM is a new research area and our contributions will help further development of
this area and also to understand the behavior of controlled large on-off queueing systems. It
is well known that stochastic comparison theorems are very useful in the analysis of control
problems driven by the ordinary Brownian motion. Here we develop such comparison results
for models driven by fBM and they can be used in finding optimal strategies for stochastic
control problems.

In the second part, we address several control problems related to stochastic networks in
heavy traffic, such as internet traffic, telephone call centers with large number of servers and
large processing networks. In a queueing system with a finite waiting room capacity in heavy
traffic, customers tend to abandon the queue if the delay is too long. On the other hand,
if the waiting room is too small, it will be full most of the time and customers are rejected
often. Thus a system manager will face the problem of appropriate waiting room size and
it is preffered to choose this waiting room capacity in a dynamic, history-dependent fashion
leading to non-Markovian strategies. We formulate this as an optimal control problem and
derive a threshold type optimal strategy. We also investigate the behavior of offered waiting
times for impatient customers in a queueing system in heavy traffic and establish a new class
of diffusion approximations.

∗Research supported by US Army Research Offce grant W911NF0710424.
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2 Controlled queueing networks with fractional Brow-

nian motion input.

In a recently published article [1], we have analyzed the control of a single server queueing
model with a fractional Brownian motion(fBM) input. I was the main author of this article.
In this model , for a given initial value x ≥ 0 and a fixed control variable u ≥ 0, the controlled
state process Xu

x is defined by

Xu
x (t) = x− ut+ σ(u)WH(t) + Lux(t), t ≥ 0, (2.1)

where the process Lux is given by

Lux(t) = −min
{

0, min
s∈[0,t]

(
x− us+ σ(u)WH(s)

)}
, t ≥ 0. (2.2)

From the above equations, it follows that Xu
x (t) ≥ 0 for all t ≥ 0. Notice that the process Lux

has continuous paths, and it increases at times when Xu
x (t) = 0. The processes Xu

x and Lux
ar both adapted to the fBM filtration. The function σ is continuous and takes only positive
values. The process Xu

x can be thought of as the queue-length of a single-server queueing
system with a fBM input and in such a situation, the control variable u is related to the
deterministic service rate.
Our work is motivated by the control problems associated with a discrete queueing network
model related to internet traffic data(ON-OFF processes). Such discrete control problems
are not easily tractable. But, under heavy traffic conditions as describe in [1], suitably scaled
queue length process converges in distribution to the above model (2.1). This can be verified
using the fundamental theorem for ON-OFF processes as given in [5]. For details, see [1].
Therefore, the analysis of the control problems related to our model enables us to understand
asymptotically optimal strategies for the corresponding controlled discrete queueing networks
in heavy traffic. We have analyzed three types of control problems related to this model as
described below:

A. Ergodic Control problem.
We consider the minimization of the long run average cost functional

I(u, x) := lim sup
T→∞

1

T
E
(∫ T

0

[
h(u) + C

(
Xu
x (t)

)]
dt+

∫ T

0

p dLux(t)
)
,

(2.3)

where h and C are non-negative cost functions defined on [0,∞) and p is a non-negative
constant. These cost functions are both continuous and increasing to infinity. The func-
tion h represents the control cost and C represents the congestion cost associated with
the system. The constant p ≥ 0 is the cost per unit time when the workload in the
system is empty. The value function is defined by

V0(x) = inf
u>0

I(u, x). (2.4)

In [1], we have obtained the following results:
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Theorem 2.1.

(i) The functional I(u, x) in (2.3) is independent of the initial point x and has the
representation I(u) ≡ I(u, x) = h(u) + pu+G(u).
Here the function G(u) is given by G(u) = E[C(Zu)] where Zu := maxs≥0{WH(s)−us}.

(ii) The value function V0(x) is independent of x and there is an optimal control u∗ > 0
such that I(u∗) = V0(x) for all x.

Proof of this theorem involves a coupling argument of the above state process Xu
x with

a stationary process. and we believe that our coupling method will be useful in the
analysis of the problems related to the long term behavior of Xu

x .

B. A constrained minimization problem.
We can apply our results in the previous theorem to obtain an optimal control for the
following constrained minimization problem driven by a fBM model. We are not aware
of any other constrained optimization problems for models driven by fBM available in
the literature. Our model here is of the form

Y u(t) = x− ut+ σ(u)WH(t) +Ku(t). (2.5)

We keep the initial point x fixed throughout. Here σ is a non-negative continuous func-
tion, Ku(·) is a non-negative non-decreasing right-continuous with left limits (RCLL)
process adapted to the natural filtration (Ft)t≥0, where Ft is the σ-algebra generated
by {WH(s) : 0 ≤ s ≤ t} augmented with all the null sets. Furthermore, Ku(0) = 0
and the process Ku is chosen by the controller in such a way that the state process Y u

is constrained to non-negative reals. In this situation, the controller is equipped with
two controls: the choice of u > 0 and the choice of Ku process subject non-negativity
of the Y u process. The initial point x is fixed.

Let m > 0 be any fixed positive constant. The constrained minimization problem is
the following:

Minimize

lim sup
T→∞

1

T
E
(∫ T

0

[
h(u) + C

(
Y u(t)

)]
dt
)

(2.6)

Subject to:

lim sup
T→∞

E
(
Ku(T )

)
T

≤ m. (2.7)

We have the following result:

Theorem 2.2. Let u∗0 be the optimal control obtained in Theorem 1.1 corresponding
to the case p = 0. Introduce u∗(m) by u∗(m) = min{u∗0,m}.
Then for each m > 0 fixed, the optimal state process is given by X∗x(t) = x− u∗(m)t+
σ(u)WH(t) +L∗m(t) where L∗m is the corresponding “local-time process” associated with
X∗x as similar to (2.1). Hence, the pair (u∗(m), L∗m) is an optimal strategy and it is
independent of the initial point x.
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C. Abilian limit relationships.

In relation with the cost functional in (2.3), we also introduce the corresponding finite-
horizon cost minimization problem on an interval[0, T ] and the infinite-horizon dis-
counted cost minimization problem. Let the value functions of these two problems be
given by V (x, T ) and Vα(x) respectively. Here α > 0 is the discount factor in the infinite
horizon discounted cost minimization problem. We obtain the existence of an optimal
control for each of this problems and establish the Abelian limit relationships among
the value functions V0(x), Vα(x) and V (x, T ) as described in the following theorem.

Theorem 2.3. lim
α→0+

αVα(x) = lim
T→∞

V (x,T )
T

= V0(x) for all x.

In the proof of this theorem, we also show that the convergence of the optimal controls
of Vα(x)(similarly, V (x, T )) as α tends to zero (as T tends to infinity), to the optimal
control of V0(x).

F. Tandem Fluid Networks.

In a recently completed article [3], we have generalized the results of [1] to tandem fluid
networks in heavy traffic. We consider a controlled two station tandem fluid network with
heavy tailed on-off sources. Under appropriate heavy traffic conditions, we establish the
weak convergence of the two-dimensional workload process to a controlled queueing model
driven by a two dimensional fBm input. We also allow the components of the input fBm
to be correlated with a constant correlation coefficient. For this model, first we show the
existence of a stationary distribution for the work load process with zero initial data. Then,
we show that there exists a stationary work load process on the same probability space so
that it’s probability distribution is invariant over time. Then finally, under mild assumptions
on the initial data, we show that any state process coalesce with the stationary state process
and the corresponding coupling time is finite and has finite moments. We also identify the
asymptotics of the tail of this stationary distribution. As an application of this result, we
address a cost minimization problem for long-run average cost and show the existence of an
optimal strategy which is independent of the initial data. In conclusion, we showed how to
extend these results to a tandem queue with any finite number of stations and also obtained
the corresponding stationary distribution.

3 Stochastic Comparison Theorems.

Stochastic comparison theorems are well known for the stochastic differential
equations(SDE’s) driven by ordinary Brownian motion. They have a wide range of applica-
tions in stochastic analysis and in particular, they play an important role in stochastic control
theory. Such results are used to compare expected pay-off values from different admissible
control strategies. In the case of SDE’s driven by fBM, we have obtained the following results
related to stochastic comparison theorems in a recent article([6]). One should note that the
stochastic integral in the SDE below is defined as a pathwise Riemann-Stieltjes integral and
this SDE has a path wise unique solution under the assumptions listed below.
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Theorem 3.1. Let H > 1
2
, T > 0 and WH be a fBM with Hurst parameter H. Consider

two solutions Xi (i = 1, 2) to the SDE’s driven by the same fBM, where

Xi(t) = xi +

∫ t

0

bi(Xi(s))ds+

∫ t

0

σ(Xi(s))dWH(s) (3.1)

for all 0 ≤ t ≤ T . For i = 1, 2, we assume that the functions bi and σ are Lipschitz
continuous and the derivative of σ is locally Hölder continuous, and b1(x) ≥ b2(x) for all x.
If the initial conditions satisfy x1 > x2, then X1(T ) ≥ X2(T ) a.s. for all T > 0.

Next we prove the following more general version which has a control theoretic inter-
pretation. Let b be a given Lipschitz continuous function. We consider a controlled state
process Xu

x which satisfies

Xu
x (t) = x+

∫ t

0

u(s)ds+

∫ t

0

σ(Xu
x (s))dBH(s) (3.2)

where σ is a Lipschitz continuous function with Lipschitz constant K > 0 and its derivative
is locally Hölder continuous. Here BH is a fractional Brownian motion with Hurst parameter
H > 1

2
and is adapted to a filtration (Ft). The control process u is adapted to the filtration

(Ft) and
∫ t

0
|u(s)|ds < ∞ for all t ≥ 0 a.s. We say u is an admissible control process, if it

satisfies the condition
u(t) ≤ b(Xu

x (t)) for all t ≥ 0 (3.3)

and the corresponding state process Xu
x belongs to the function space Wα,∞

0 [0, T ] for some
α0 > α > 1−H. Here α0 = min{1

2
, δ

1+δ
}, where δ > 0. If u is an admissible control then we

say Xu
x is an admissible state process. Let Ax be the collection of all such admissible state

processes Xu
x described above. Next we introduce a process Yx which is driven by feed-back

type control b(Yx(s)) and it satisfies

Yx(t) = x+

∫ t

0

b(Yx(s))ds+

∫ t

0

σ(Yx(s))dBH(s). (3.4)

Then, we have the following theorem:

Theorem 3.2. Assume that the functions b and σ are Lipschitz continuous and the derivative
of σ is locally Holder continuous as in the previous theorem. Then there is an optimal process
Yx in Ax such that

Yx(t) ≥ Xu
x (t) a. s.

for all t ≥ 0, where Xu
x is any process in Ax. Furthermore, Yx satisfies the SDE

Yx(t) = x+

∫ t

0

b(Yx(s))ds+

∫ t

0

σ(Yx(s))dBH(s). (3.5)

Hence the optimal control u∗ is feed-back type and is described by u∗(t) = b(Yx(t)) for all
t ≥ 0.
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Both of the above theorems are path-wise comparison results. We have also obtained the
following mean comparison theorem when the Hurst parameter 0 < H < 1.
Let b be a convex, Lipschitz continuous function. We consider a general state process X
which satisfies the equation

X(t) = x+

∫ t

0

u(s)ds+ σBH(t). (3.6)

where σ is a constant, BH is a fBM with Hurst parameter 0 < H < 1 and is adapted to a
filtration (Ft). The control process u is also adapted to the filtration (Ft),

∫ t
0
|u(s)|ds <∞

for each t ≥ 0 a.s. and it also satisfies

u(t) ≤ b(X(t)), (3.7)

for all t ≥ 0. Next,we introduce the process Y , which is a solution to the SDE given by

Y (t) = y +

∫ t

0

b(Y (s))ds+ ρWH(t). (3.8)

where ρ is a positive constant, WH is a fBM with the same Hurst parameter 0 < H < 1 in
a (possibly a different) probability space (Ω̂, F̂, P̂ ) and WH is adapted to a filtration (F̂t).
The Lipschitz continuity of b guarantees a strong solution to (3.8) with respect to any fBM
WH . Then we have the following theorem:

Theorem 3.3. Let σ and ρ > 0 be constants which satisfy |σ| ≤ ρ and the initial conditions
satisfy x ≤ y. Then for any T > 0 and for any convex function h,

E[h(X(T ))] ≤ E[h(Y (T ))].

In particular, E[max
[0,T ]

X(s)] ≤ E[max
[0,T ]

Y (s)].

All the above theorems are proved in ([6]).

4 Controlling a process to a goal.

A. Goal problems without fuel.

We have solved the following probability maximization problem in [6] for processes
driven by fBM.

Consider a state process Xu
x given by

Xu
x (t) = x+

∫ t

0

u(s)ds+ σBH(t) (4.1)

where σ > 0 is a constant. Here BH is a fractional Brownian motion with Hurst param-
eter 0 < H < 1 and is adapted to a filtration (Ft). The control process u is adapted
to the filtration (Ft),

∫ t
0
|u(s)|ds < ∞ and u(t) belongs to A(Xu

x (t)) for all t ≥ 0 a.s.
where each control set A(y) is a subset of R and the collection {A(y) : y in R} is a
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priori available to the controller.
Let a and b be constants so that a < x < b. We would like to consider the problem of
choosing the constant σ and the drift control u to maximize the probability that the
state process Xu

x reach the goal b before reaching a. In the case of the models driven
by standard Brownian motion, solutions to such problems are already known.
Our main assumption here is that the existence of a positive constant ρ > 0 and a
Lipschitz continuous function b defined on R so that

b(y) = supA(y) (4.2)

and ρ > 0 satisfies (4.3) below. Admissibility of the control process u guarantees that
u(t) ≤ b(Xu

x (t)) for all t ≥ 0.
We address this problem in the following two cases:

(i) If b(y) ≥ 0 for all y, then we assume that available σ are bounded below by a
positive constant and we let ρ = inf σ.

(ii) If b(y) ≤ 0 for all y, then we assume that the available σ are bounded above and
in that case, we set ρ = supσ.

Therefore, in both cases
b(y)

ρ
1
H

= sup
b(y)

σ
1
H

(4.3)

holds, where the sup is taken over all available constants σ > 0. Consider the process
Yx described by

Yx(t) = x+

∫ t

0

b(Yx(s))ds+ ρWH(t). (4.4)

where WH is a fBM with the same Hurst parameter 0 < H < 1 in a (possibly a
different) probability space (Ω̂, F̂, P̂ ) and WH is adapted to a filtration (F̂t). Then we
have the following theorem.

Theorem 4.1. Assume (4.2) and (4.3). Let Xu
x be any state process which satisfies

(4.1). Let Yx be the process described above in (4.4). Then,

P [Xu
x reaches b before a] ≤ P [Yx reaches b before a]. (4.5)

B. Goal problems with fuel.

In [6], we also address the above goal problem in the presence of fuel available to
the controller. The controller can spend the fuel to gain a deterministic displacement
which is proportional to the amount of fuel spent. This is a singular control problem
driven by fBM noise. In this situation, we introduce two extreme strategies known
as bold play and timid play where in bold play strategy, controller spends all the fuel
immediately and in timid play strategy, controller spends fuel only if the position is at
origin to receive a forward push. In two theorems, we have established that bold play
and timid play are optimal strategies under different circumstances.

7



5 Utility maximization.

We consider a controlled state process

Xu
x (t) = x+

∫ t

0

u(s)[µ ds+ dBH(s)] (5.1)

where WH is a fractional Brownian motion with Hurst parameter 1
2
< H < 1 and is

adapted to a filtration (Ft). The control process u is adapted to the filtration (Ft) and∫ t
0
|u(s)|ds < ∞. The initial point x ≥ 0. The stochastic integral

∫ t
0
u(s)dBH(s) is consid-

ered a Wick type integral rather than the path-wise stieltjes integral we have used in the
comparison theorems.
The problem addressed here is motivated by the following continuous-time gambling sce-
nario: Consider a gambler with initial wealth of x > 0 dollars and who would like to bet
an amount of u(t) dollars at time t in a continuous-time gambling scheme where the state
process of the gamble is given by µt+BH(t). Gambler’s bet size u(t) at time t may depend
on all the information up to time t. Hence, the gambler’s fortune at time t is given by Xu

x (t)
of (5.1). In this context, to have the infinitesimal mean rate of change of fortune to be
µ E[u(t)]dt, it is natural to use wick-type stochastic integral

∫ t
0
u(s)dBH(s), since wick type

integral satisfies E
∫ t

0
u(s)dBH(s) = 0.

Gambler’s objective is to maximize the expected utility of the terminal wealth E[U(Xu
x (t))]

where U is a concave utility function.
For this problem, we derived an explicit optimal strategy in [6] using the fractional Girsanov
theorem and the fractional Clark-Ocone formula.

6 Networks in heavy traffic.

A. Offered waiting times In a recent manusript [4], we have analyzed a sequence of
single-server queueing systems with impatient customers with general patience time
distributions. We established the heavy traffic approximation for the scaled offered
waiting time process and obtained a diffusion process as the heavy traffic limit. These
results lead to a large class of diffusion processes with non-linear drift coefficients
as such heavy traffic limits. As a consequence, we also obtained the same diffusion
process for the heavy traffic limit of the scaled queue length process. We also showed
the convergence of the expected value of an infinite-horizon discounted cost functional
of the queueing system to that of the diffusion process under the heavy traffic limit.

B. Many server queueing systems. This project is a joint work with Professor Avi
Mandelbaum who is an expert in the theory of queueing systems in heavy traffic. Mo-
tivated by my previous work [2] on queueing systems in heavy traffic, we consider an
important control problem which has applications to management of a large call center,
a receiver of a wireless communications network or a communication system related
to internet traffic. This work is recently submitted for publication and the current
manuscript consists of 52 pages. We were able to make an important generalization
to currently available results in the literature, where the system manager is allowed to
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choose a non-Markovian blocking mechanism which may depend on the current state
as well as the past history of the network.

We consider a controlled queueing system with many servers, finite-capacity queue with
impatient customers. Arrivals are general; impatience and service times are exponen-
tial, and servers are iid. Customers who arrive to a full queue are lost, and customers
who wait too long in the queue abandon. Motivated by profit maximization (or cost
minimization) in moderate-to-large communication networks, blocking corresponds to
a busy-signal and abandonment to a disconnect before being served. The problem is
the tradeoff between these two: the larger the queue capacity the less the blocking
which, in turn, leads to longer queues, more waiting and hence more abandonment.
Therefore, we intend to introduce linear costs proportional to the queue length, the
number of blocked and abandoning customers, and the number of idle servers. These
costs are discounted over an infinite horizon to yield a stochastic control problem, in
which queue capacity is one’s control variable. We solve this problem asymptotically, in
the Halfin-Whitt heavy-traffic regime. Specifically, we study cost minimization as the
arrival rate, the number of servers and (hence) the queue-capacity increase indefinitely,
at rates that give rise to what has been called the QED (Quality- and Efficiency-Driven)
regime: relatively few blocking and abandonment (service-quality) jointly with high
servers’ utilization (service-efficiency). Associated with the original control problem,
there is a diffusion control problem. We solve the latter explicitly and our solution led
to a threshold type optimal strategy. We use this solution to construct asymptotically
optimal controls for the controlled queueing network problem.

For this, we obtained moment bounds for the scaled queue length. Then, we were
able to derive an explicit asymptotically-optimal queue-capacity, including infinite ca-
pacity(no busy-signals) if blocking costs far exceed abandonment costs. It turned out
that the value function of the diffusion control problem is a twice continuously dif-
ferentiable convex function. We show that the value function of the diffusion control
problem provides an achievable asymptotic lower bound for the cost function of the
original queueing problem.
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